NAME	COMB
SIGN	
	ARAL COLLEGE KALL

P525/1

JUL/AUG 2019

CHEMISTRY

2 1/2 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

END OF TERM TWO EXAMINATIONS

CHEMISRTY

(Principal subject)

Paper one

2 Hours 30 minutes.

INSTRUCTION TO CANDIDATES:

- Answerall questions in this paper
- Illustrate your answer with equations where applicable

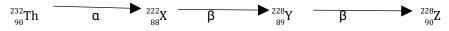
SECTION A (46 MARKS)

1.	density 2.28x10gm ⁻³ at 1427K and 1.013X10 ⁵ pa.		
	(a)	Determine the molecular formula of Q and draw it structure(3marks)	
	(b)	Stathe the conditions under which the above structure exists.(1mark)	
2.	Cor	nplete the following equations and in each case state the IUPAC name for the major product	
	(6m	narks)	

(a)	SO ₃ H	CH ₃ Br	
(a)		AICI ₃	

Name

Name.....


(c)
$$\frac{H^{\dagger} MnO_{4(aq)}}{Heat} >$$

Name.....

(d)
$$\frac{\text{conc HNO}_3}{\text{conc H}_2\text{SO}_4,60^{\circ}\text{C}}$$

Name ·····

3. (a) a radioactive isotope of the element Thorium $\frac{232}{90}$ Th decays according to the following scheme.

Identify X, Y and Z. (1 ½ marks)

(b). (i) what is meant by stability of nucleus? (1mark)

.....

(ii) explain the factors that determine the stability of the nucleus. (2marks)

l.	hyd	o isomeric compounds X and Y have the following percentage compositions by mass, carbon, rogen and chlorine with 66.6%, 5.5% and 28.1% respectively. the molecular mass of appounds is 126.5.
	(a)	Determine the molecular formula of X and Y. (3 marks)
	(b)	(i) one of the compounds X, yields a white precipitate when warmed with aqueous silver nitrate, but Y does not. Explain the observation. (1 $\frac{1}{2}$ marks)
		(ii) suggest a structure for X, and give one of possible structures for Y (1mark)
.		tinguish between the following pair of compounds using suitable reagents and in each case te the observations.
	(a)	Ethyne and ethanol (3marks)
		Reagent

(b)	$\mathrm{CH_3CH_2CH(CH_3)_2}$ and $\mathrm{CH=CHCH(CH_3)_2}$ (3marks) Reagent
	Observation
(c)	Cl and CH ₂ CH ₂ Cl (3marks) Reagent
	Observation
(a) E	Explain why lithium does not form peroxide or super oxide when burnt in oxygen. (2marks

		the reaction. (2 ½ marks)
7.	(a).	what is meant by; (1mark @)
	(i)	Osmosis
	(ii)	Osmotic pressure
	(b).	state the significance of osmosis (1marks)
	(c)	the osmotic pressure of solution containing 1.24% of a polymer is 3.1x10-3 atmospheres at 25°C. Determine the relative molecular mass of the polymer. (R=0.0821 atm mol ⁻¹ Cl ⁻¹). (2 ½ marks)
8.	Cor	mplete the equations below and outline the mechanism of each reaction.
	(a)	$ \begin{array}{c} \text{C1CH}_2\text{CH}_2\text{C1} & \xrightarrow{\text{KOH / methanol}} \\ & & \text{Heat} \end{array} $
	Me	chanism

(b) $CH_3CH=CH_2$ $Br_2/$	H ₂ O	(2 1/2 marks)
Mechanism		
Given the following thermocher	mical data;	
Salt	Hydration energy (KJmol-1)	Lattice energy (KJmol-1)
AX	880	860
ВХ	790	800
(a) Which salt is more soluble	 (1mark)	
(4)	(
(b) Explain your answer (2 ½ m	narks)	
(b) Explain your unover (2 12 h	id. No)	

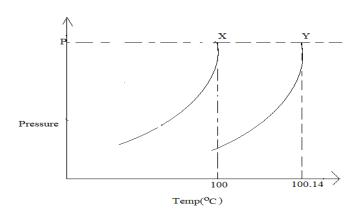
9.

SECTION B (54 MARKS)

10.	(a) Sate	Boyles law (1ma	ırk)				
	The table	e below shows th	ne time (t) ta	_	of different mol	ecular mass (Mi	r) to diffuse
	t	: (s)	25.00	34.23	41.67	47.62	
	1	Mr	16	30	44	58	
Plo	∟ t a graph	of rate of diffusion	on, (1/t) aga	inst $\sqrt{\frac{1}{Mr}}$		(4mark	rs)
	c) Using	your graph in (b)	above, find	the molecular r	nass of a gas;		
	i) whose	rate of diffusion	is 0.025s ⁻¹ (1mark)			
	, 		`	,			
	ii) that ta	ikes 38.42s to di	ffuse (2mar	ks)			
	d) State	four applications	of gacoous	diffusion (2ma	rko)		
	u) State	ioui applications	or gaseous	diriusion (zma	185)		
11.	Write eq	uations to show	how each of	the following o	onversions car	n be effected an	d indicate the
	reagents	and conditions	for the react	ions.(1 ½ mark	s @)		
	(a) C	H ₃ CH ₂ CH ₂ Br to	CH ₃ CH ₃				

(b)	CH ₃ CHO to CH ₃ CH ₂ OCH ₂ CH ₃
(c)	NH ₂ to N=N-

12. The table below shows the first ionization energy in KJmol-1 of the elements A, B and C. one of the elements belongs to group VII.


Element	1 st I.E	2 nd I.E	3 rd I.E	4 th I.E
Α	730	1500	7730	10500
В	500	4560	6900	9010
С	580	1815	2740	8720
D	1310	3460	5300	7020

(a)	(i) define the term ionization energy (1m	ark)

(ii). Identify element that belong to group I of periodic table and give reason for your answer.

	(1 ½ marks)
	(iii). Which of the following elements form a cation with charge +3? (1 ½ marks)
	(iv). Write the formula of the compound between atoms of the element B and D. (1 ½ marks)
b)	Explain why there is increase in successive ionization energy. (2 ½ marks)
,	

13. 5.5g of a non-volatile substances B was dissolved in 125g of a solute. The vapour pressure curve of the solution and pure solvent at constant pressure P are shown.

a)	identify the curve for the solution and the solvent(½mark @)

	0.52°Cmol ⁻¹ kg ⁻¹) (3marks)				
	c) state the limitations of your calculations(2marks)				
•••••					
	complete the following organic reactions and outline the accepted reaction mechanism. (3 ½ marks @)				
	(a) $+ Br_2 - FeCl_3 \rightarrow$				
	Mechanism				
	(b) $CH_3 \longrightarrow \frac{Dil H_2 SO_4}{warm}$				
	Mechanism				

15.	Ехр	Explain the following observations				
	(a)	the heat of hydrogenation of cyclohexane is -120 KJmol ⁻¹ and that of benzene is -210 KJmol ⁻¹ . (3marks)				
	(b)	the melting point of methylbenzene is -95 $^{\circ}$ C lower than that of benzene which has the highest molecular weight. (3marks)				
	(c)	methylbenzene reacts bromine in presence of Aluminium chloride catalyst to form two products, while benzenesulphonic acid forms one product. (4marks)				
16.	a m	ass spectrum of chlorine shows the molecular peaks at 70, 72 and 74.				
	(a)	Explain this observation (2marks)				

(b)	The peaks at 70, 72 and 74 are in the ratio of 9:6:1. calculate the average atomic mass of		
	chlorine. (3marks)		
	27		
(c)	Calculate the relative abundance of Cl ³⁵ and Cl ³⁷ (2marks)		
17. The	e flow chart below shows how phenol (hydroxybenzene) can be made from benzene and		
cor	mpound A in the process below.		
	n O-OH		
	CH ₃ C-CH ₃ CH ₃ C CH ₃ OH		
1	\bigcirc A \bigcirc B \bigcirc Dil H ₂ SO ₄ \rightarrow C \rightarrow C		
E	Conc H ₃ PO ₄ cumene peroxide Phenol		
(a)	(i) identify compounds A, B and C. (3marks)		
(a)	(i) identify compounds A, B and C. (Smarks)		
	(ii). What is the name given to the process above? (1mark)		

(b)	Outline the mechanism for formation of	H(CH ₃) ₂ (2 ½ marks)				
			•••••			

END